
Applying Mamba to Graph Neural Networks
Jyotirmaya Shivottam

23226001
CS660/CS460 - Machine Learning, Spring 2024

Subhankar Mishra Lab
National Institute of Science Education and Research

An OCC of Homi Bhabha National Institute

Goals of the Project

▶ To investigate whether Structured Space Models (SSMs), specifically
Mamba (S6), can be applied to state updates in Graph Neural Networks
(GNNs).

▶ To implement such a graph-based model and to benchmark against
existing baseline GNNs, for instance:
▷ 2015: Gated Graph Sequence Neural Networks (GGSNN),
arxiv:1511.05493.

▷ 2016: Graph Convolutional Networks (GCN), arxiv:1609.02907.
▷ 2017: Graph Attention Networks (GATN), arxiv:1710.10903.
▷ 2017: Graph Sample and Aggregate (GraphSAGE), arXiv:1706.02216.
▷ 2018: Graph Isomorphism Networks (GIN), arxiv:1810.00826.
▷ 2023: Spatio-Temporal Adaptive Embedding Transformer
(STAEformer), arXiv:2308.10425.

Primer: Graph Neural Networks (GNNs)

▶ GNNs utilize Message Passing to update the state of each node in a
graph, G(V , E), based on the states of its neighbors, like so:

m
(l)
i = MESSAGE

(
{h(l−1)

j : j ∈ N [i]}
)

a
(l)
i = AGGREGATE

(
{m(l−1)

j : j ∈ N [i]}
)

h
(l)
i = UPDATE

(
h
(l−1)
i , a

(l)
i

)

▶ These functions must be permutation-invariant, as the graph-data is
inherently unstructured. Usually, MPNN variants differ in how they define
(model) these functions.
▷ GCN updates node features via spectral graph convolutions.
▷ GGSNN uses Gated Recurrent Unit (GRU) update for node features
followed by neighborhood sum aggregation.

▷ GraphSAGE trains aggregator functions on different hops of sampled
node neighborhoods.

▷ GAT uses self-attention mechanism on node neighborhoods with sum
aggregation.

▷ Spatio-temporal (Dynamic) GNNs utilize message passing (and mixing)
in both the spatial and temporal domains.

Motivation

▶ Aforementioned models are limited by the expressiveness of the
1-Weisfeiler-Lehman (1-WL) graph isomorphism test (cf. GIN).

▶ This constraint is particularly challenging for graph data with long-range
dependencies, e.g., in social network analysis or bioinformatics.

▶ While models like GAT perform well, their O(N2) complexity limits their
scalability for large graphs.

▶ Mamba, a recently proposed time-varying state-space model (SSM) for
sequence modeling, scales linearly with sequence length.

▶ Our goal is to adapt Mamba to GNNs by treating the state
update of each node as a sequence.

SSM-based Sequence Modeling via Mamba

▶ Proposed by Gu et al. (De, 2023) to efficiently model seq2seq maps on
long sequences.

▶ SSMs, including Mamba, relate a continuous input sequence x(t) ∈ R to
an output sequence y(t) ∈ R via an implicit latent state h(t) ∈ Rd , using
the following first-order ODE (cf. Recurrent Neural Networks):

h′(t) = Ah(t) + Bx(t)

y(t) = Ch(t)(+Dx(t))

▶ Here, A ∈ Rd×d , B ∈ Rd×1, C ∈ R1×d , and D ∈ R are the state
transition matrix, the input matrix, the output matrix, and the
feedforward matrix, respectively.

▶ As we work with discrete data, the equations are discretized, e.g., using
Zero-Order Hold (ZOH):

Ā
ZOH
:= exp(∆A)

B̄
ZOH
:= (∆A)−1(exp(∆A)− I) ·∆B

ht = Āht−1 + B̄xt
yt = Cht

▶ Mamba makes ∆, which denotes a learned step size, input-dependent,
indirectly making A, B , and C input-dependent and thus, context-aware.

▶ A is structured as a diagonal matrix to stabilize state update and simplify
computation.

▶ Latent state h(t) stores compressed context, leading to higher efficiency
than transformer-based approaches.

▶ Mamba’s computational complexity scales as O(N), making it practical
for sequence modeling tasks.

▶ Clever hardware-aware implementation of associative scan algorithm
enables efficient training on modern hardware.

▶ Typical Mamba block structure includes linear projection, depth-wise
convolution, SSM update, and interleaved non-linearities.

Structure of Mamba

x

h

o

U

V

W
Unfold

xt-1

ht-1

ot-1

U

W

xt

ht

ot

U

W

xt+1

ht+1

ot+1

U

W

VV V V... . . .

Our Method – Expressive Graph Mamba

▶ We redefine the UPDATE step for evolving graph representations over time
(i.e., application of EGM blocks):

▶ EGM utilizes a shared Mamba block for node feature updates.

▶ AGGREGATE can be fixed or learned, e.g., by incorporating a self-attention
mechanism:

x
(t+1)
i := y

(t+1)
i = ρ

 ∑
j∈N [j]

αijW
(t+1)y

(t+1)
j


▶ The attention mechanism aggregates node features, while SSM handles

node feature updates.

▶ Final graph representation is obtained after evolving for L time steps (i.e.,
passing through L EGM blocks).

▶ EGM blocks can be stacked to allow information flow between multi-hop
neighborhoods, similar to related GNN architectures.

▶ We also extend the EGM architecture to dynamic spatiotemporal graphs
by learning over edge-feature-weighted adjacency matrices.

EGM – Illustrated

Mamba

L
in

e
a

r

σ

D
ro

p
o

u
t

Learned / Fixed

AggregationL
in

e
a

r

σ

D
ro

p
o

u
t

Skip Connection Skip Connection

D
ro

p
o

u
t

x L

▶ SiLU activation was used as the non-linearity in all instances.

▶ 1× 1 Conv layers were used instead of Linear as fully-connected layers.

▶ Layer Normalization and Dropout generally aid training stability, but are
optional.

▶ The residual connections are removed in the spatio-temporal case.

Experiment Details

▶ Utilized the Planetoid datasets for multi-class node classification on
static graphs, comparing against MPNN variants (GCN, GAT/v2,
GraphSAGE, GIN).

▶ Used CrossEntropy loss for node classification.

▶ Employed the PEMS08 dataset for traffic forecasting on dynamic
graphs, using HuberLoss as the loss function.

▶ Conducted experiments with 3-5 random seeds, tracking roughly 600
experiments on WandB (and more performed locally), totaling
approximately 1,750 runs.

▶ Performed ablation experiments on the architecture, informing the
suggestions in the previous block.

Table: Dataset Information

Name #nodes #edges #features #classes Timesteps
Cora 2,708 10,556 1,433 7 -

CiteSeer 3,327 9,104 3,703 6 -
PubMed 19,717 88,648 500 3 -
PEMS08 170 - - - 17,856

Table: Training Information. (*) indicates the best-performing component.

Loss Function CrossEntropy, HuberLoss
Scheduler ExponentialLR (*), LinearLR, LambdaLR
Optimizer RAdam (*), Adam (*), NAdam, AdamW

Weight Decay 0.0005
Learning Rate [0.0001, 0.01]

(ST)EGM Layers {1, 2, 3, 4, 6, 8}
Epochs [50, 500]

Results

egm gcn gin gat gatv2 sage mlp
Model

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 A
cc

ur
ac

y

Cora

egm gcn gin gat gatv2 sage
Model

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

CiteSeer

egm gcn gin gat gatv2 sage
Model

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 A
cc

ur
ac

y

PubMed

Table: Performance on PEMS08 (Baselines reported via STAEformer)

Metric MAE RMSE MAPE

GWNet 14.40 23.39 9.21%
DCRNN 15.22 24.17 10.21%
STGCN 16.08 25.39 10.60%

STAEformer 13.46 23.25 8.88%
STEGM (Untuned) 21.44 33.09 13.62%

Model Ablation

max mean sum gin gcn gat gatv2 sage
Aggregation Method

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

EGM

1 2 3 4 5 6 7 8
Number of Layers

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Accuracy vs Number of Layers [On Cora]

Cora CiteSeer PubMed
Dataset

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

EGM with Mamba Ablated

0 10 20 30 40
Iteration

20

40

60

80

100

120

Hu
be

r L
os

s

STEGM Loss Curves

Mamba
LN+Mamba
No Mamba

Discussion & Limitations

▶ (ST)EGM performs comparably with the baselines across all tested
datasets.

▶ Fixed aggregation functions like mean, sum, and max surprisingly yield
superior results compared to learned aggregation, indicating unsuitability
of the GAT-based method for EGM due to potential over-smoothing.

▶ EGM’s accuracy decreases notably with increasing layers, possibly due to
over-smoothing and instability in the Mamba block.

▶ Ablative experiments reveal that removing the Mamba block for static
graphs does not significantly affect overall performance, while for
dynamic graphs, the model struggles without the Mamba block.

▶ Mamba’s effectiveness is hindered by the contradiction between node
states treated as individual sequences (i.e., sequence length = 1) and
Mamba’s expectation of long sequences.

▶ Alleviating this bottleneck for static graphs may require transitioning to a
node sequence approach, but this violates the graph inductive bias,
whereas dynamic graphs are more naturally suited to such an approach.

▶ The potential of more sophisticated normalization schemes, such as
Spectral Normalization, was explored to stabilize training by rescaling the
impact of large activations on weight updates, but no improvement was
observed in the model performance.

Planned Work

▶ Experiments are being set up with deeper models on benchmark datasets,
e.g., the LRGB and TGB datasets to holistically evaluate scalability and
adaptability of our (ST)EGM architecture.

▶ Further look into the model’s performance in terms of FLOPs.

▶ Hyperparameter search to further boost model performance.

References

▶ Please check the project listing on the CS460 website
(https://shorturl.at/dghOY) for the complete bibliography.

▶ https://gitlab.niser.ac.in/JeS/mambagnn/ will host the
codebase in the near future.

gitlab.niser.ac.in/JeS/mambagnn/ | jyotirmaya.shivottam@niser.ac.in April 19, 2024 | CS660/CS460 - Machine Learning, Spring 2024 | NISER

https://shorturl.at/dghOY
https://gitlab.niser.ac.in/JeS/mambagnn/
gitlab.niser.ac.in/JeS/mambagnn/
jyotirmaya.shivottam@niser.ac.in

